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We present a unifying approach to eonformal field theories and other geometric models within the formalism of coadjoint orbits 
of infinite dimensional Lie groups with central extensions. Starting from the previously obtained general formula for the symplec- 
tic action in terms of two fundamental group one-cocycles, we derive the most general form of the Polyakov-Wiegmann compo- 
sition laws for any geometric model. These composition laws are succinct expressions of all pertinent Noether symmetries. As a 
basic consequence we obtain Ward identities allowing for the exact quantum solvability of any geometric model. 

It has been recognized for the last few years that  
the whole dynamics  of  D = 2 conformal  field theories 
is manifes ted  through the structure of  the underlying 
inf in i te-d imensional  symmetry  groups [1] .  In the 
present  let ter  we discuss a general group-theoret ical  
approach  based on the method  o fcoad jo in t  group or- 
bits [ 2] ~ and show how to obta in  in terms o f  most  
general fundamenta l  group-covar iant  objects a uni- 
fied formal ism for t reat ing classical and quan tum 
propert ies  o f D  = 2 conformal  field theories and other  
geometr ic  models.  

We first briefly review the basic facts o f  the for- 
malism. Let G be a Lie group which has a non-t r ivia l  
central extension t~. The elements o f  the correspond-  
ing Lie algebra ~ =  ~ + R  are represented by pairs (~, 
n) ,  where n is a central  element.  Let ~* with ele- 
ments  (B, c) be the dual  of  ~ relat ive to a bi l inear  
form 

(B, c) I (if, n ) )  = (BI  ~)o + c n ,  
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~ For a formulation appropriate for path integral quantization, 
see refs. [ 3-5 ]. 

which is an extension of  the natural  b i l inear  form 
( "1' )o  on ~ ×  f¢*. The adjoint  act ions o f  G and f¢on 
f~ are given by Ado (g)  ~= g~g-  1 and ado (~l)  ~2 = [ (~, 
Ca ]. By dual i ty  of  ( .  I' )o  these t ransformat ions  in- 
duce the corresponding coadjoint  act ions Ado (g)  and 
ad~ (~) on the dual  space f#*. Given  a one-cocycle S 
on G with values in f¢* satisfying the following cocy- 
cle condit ion:  

(kS)  (g, ,  g2) =Ad~(g ,  ) S(g2) - S ( g t g z )  +S(g l  ) = 0  
(1) 

and such that  S ( I ) = 0 ,  the above adjoint  and coad- 
jo in t  act ions can be extended to ~ and its dual  space 
as follows: 

A d ( g )  (~, n)  = (Ado(g)  ~, n + 2 ( S ( g - ' ) l ~ ) o ) ,  (2)  

Ad* ( g ) ( B ,  c) = (Ad~(g)  B + c 2 S ( g ) ,  c ) ,  (3 )  

where 2 is a constant  de te rmined  by a specific model.  
The inf ini tesimal  l imit  of  the adjoint  representat ion 
of  the Lie group reproduces the adjoint  representa- 
t ion o f  its Lie algebra, 

ad¢¢,,,,)(~2, n 2 ) =  [ (~, ,  nl ), (~2, n2)] 

= ( [~1, ~2], cO(~l, ~1) ) . (4 )  

Consistency with the finite t ransformat ion requires 
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that the Lie algebra cocycle in the above formula 
is defined in terms of the infinitesimal limit of 
group one-cocycle s(e)=S(I+e) as o9(~, r/)= 
- 2 ( s ( ~ )  Ir/)o. It is interesting to observe that it is 
possible to determine uniquely the group one-cocycle 
S(g) in terms of the Lie algebra cocycle. Applying 
namely the cocycle condition ( 1 ) to S(g(I+~) g-1 ) 
one obtains 

og(Ado(g) ~, Ado(g) r/) -o9(~, r/) 

= ) . ( S ( g - l ) l [ ~ ,  q ] )o -  (5) 

This formula has been obtain by Kirillov [ 6 ] for the 
purpose of determining the group adjoint action from 
the underlying Lie algebra structure. 

For completeness we also list the corresponding Lie 
algebra version of the coadjoint action: ad*(~, n ) (B, 
c) =ad~ (~) B+c2s(~),  0). 

In the physicist's language w ( ,  ) in (4) is just the 
"anomaly" of the algebra if, while S(g) in (2) and 
(3) is the "integrated anomaly", i.e. the "anomaly" 
corresponding to the finite group transformations. 

In this framework one can define the Kostant- 
Kirillov symplectic structure [2] on each coadjoint 
orbit (9(s0,c) (i.e. an orbit in the dual space ~* with a 
generic point (Bo, c) ) in terms of the non-degenerate 
and closed two-form f2. Locally the symplectic two- 
form can be given in terms of the one-form a such 
that E2 = da. Therefore, the corresponding symplectic 
action, whose phase space is a coadjoint orbit of the 
special class (9(o.c) ~2, is given by [ 7 ] 

W[g]=Sa=-2c  ~ ( ~ ( g )  l ~ / (g))  • (6) 

In (6) the following notations are used. The integral 
on the RHS is over a one-dimensional curve on the 
orbit (9(o,c). The pair S~(g)= (S(g), 1/2) is an ele- 
ment of the coadjoint orbit, transforming according 
to the coadjoint action in (3) as 6e(g~g2)= 
Adg, re(g2) due to the cocycle condition ( 1 ). More- 
over, 6P(g) varies along the co-orbit according to 
d ~ ( g )  =ad*(~C(g))re(g) ,  with ~/(g) = (y(g), 
rny(g) ) being a Maurer-Cartan (MC) one-form on ~9 
satisfying the MC equation d~/= ½ [ ~¢, ~ ] .  The MC 

#2 Most of  the physically relevant geometric field theories, such 
as WZNW models and induced (super) gravity in D = 2 ,  are 
of  this class. 

equation fixes the central element of ~¢ to 
my= ½d- 1to(y, y) and thus [ 7 ] 

W[g] = -2c ~ [ (S(g)lY(g) )o 

- ½d -1 ((s(y(g))  lY(g) )o) ] • (7) 

The last term on the RHS of (7) is nothing but the 
generalization of the well known multivalued term in 
WZNW models. 

The generic MC one-form y(g) is of the form 
y(g)=dgg -~ and its transformation property 
y(gh) = y ( g ) + A d o ( g ) y ( h )  makes it to a G one-co- 
cycle with values in f#. The identity 

my(gh)=my(g) +my(h) +,~(S(g-l)lY(h) )o, (8) 

which can be obtained from (5), ensures that ~' is 
also a G one-cocyele: ~(gh) = ~¢(g) +Ad(g)  ~ (h ) .  
The mismatch between transformation properties of 
re and ~' leads to the following important composi- 
tion law valid for all geometric actions (6): 

W[gh] = -)tc ~ < 6P(gh) I ~/(gh) > 

= - 2 c  J < J ( h ) I  Adg-, ~ (gh)  > 

=W[g]+W[h]+c2;  (S(h) ly (g-~))o .  (9) 

The above relation generalizes the Polyakov- 
Wiegmann composition law for the WZNW action 
[ 8 ] to the arbitrary symplectic actions on coadjoint 
orbits [ 7 ]. 

Before studying the consequences of (9) it is worth 
mentioning that by substituting h = g -  ~ into ( 8 ) one 
easily establishes, as a byproduct of (8), an alterna- 
tive form of the symplectic action (6) 

1 
W[g] = - f [my(g) + 2 ( S ( g  -~ ) [y(g-~ ) )o] c 
=~ my(g_l) , ( 1 0 )  

where we used relations S(g-~ ) = -Ad3 (g-1 ) S(g) 
and y(g-~) = -A d o (g  -1) y(g) following from the 
appropriate cocycle conditions. The RHS of (10) is 
easily recognized as the form of the symplectic action 
proposed in ref. [4]. Thus, eq. (10) provides the 
proof of the equivalence between the actions derived 
in refs. [ 5 ] and [ 4 ]. 

Let us stress that the basic relations (9) and (10) 
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are valid for the action densities themselves. 
Armed with the composition law (9) we can now 

analyze the symmetry structure associated with the 
general geometric action (6). Consider first the right 
group multiplication generated by infinitesimal 
h = I +  r/. We easily obtain the following transforma- 
tion rule for W[g]: 

~ W[g] - W[g( I+rl) ] - W[g] 

= c 2 f  (s(tl)[y(g-')>o, (11) 

valid up to second order in 7. We made use in deriv- 
ing ( 11 ) of W [ I +  ~/] = - ½c2f <s(n)Id~/>o=O(q2). 

We now can easily determine the condition for the 
invariance of the action, since 8~ W[g] = 0 holds for 
the elements t/e ovd - a subalgebra of  ~ -  which satisfy 
s(q) = 0. For the corresponding right multiplication 
by the finite group elements h we find directly from 
(9) that S ( h ) = 0  implies W[gh]- Wig] =0,  and 
hence the geometric action in (6) remains invariant 
under the right multiplication with elements h e H, in 
the subgroup of G corresponding to ov¢. Clearly H is 
the isotropy group of the orbit of  (0, c) according to 
(3). 

Variation in ( 11 ) with an arbitrary q yields the fol- 
lowing general equation of motion: 

s(y(g-~))=O, (12) 

and hence on-shell y(g-~) must belong to the sta- 
tionary subalgebra Jr.  Moreover, from (1) and 
dSP(g) = a d * ( ~ ( g )  ) 5P(g) one finds that 

s(y(g -l ) ) ----- - A d ~ ( g  -~ ) d S ( g ) .  (13) 

Correspondingly S(g) must remain constant on shell. 
We now turn our attention to the issue of invari- 

ance of W[g] under the left group multiplication. 
Substituting g =  I +  e in (9) find the following trans- 
formation law: 

8~W[h]= W[(I+e) h] -  W[h] 

= - c 2 f  <S(h) Ide>o. (14) 

This reproduces the Noether theorem for the left 
multiplication [ 9 ] with S(h)  being a constant of  mo- 
tion. With S(h) playing the role of  generator of  the 

Noether symmetry the Poisson structure is deter- 
mined by 8~S(h)={S(h), <S(h)[e)o}. Since on the 
other hand we have from (1) 8~S(h)= 
ad~ (e) S(h) +s(e), we obtain the following Poisson 
bracket algebra (with arbitrary e, ~/~ ~): 

{<S(h) le>o, <S(h) Ir/>o} 

= - <add(E) S(h)+s(e) Ir/)o 

-- <S(h) I [e, t/] >o - <s(e)Ir/>o • 

One easily observes that this Poisson bracket relation 
for the Noether charge generates the original com- 
mutators of the extended Lie algebra ~ given in (4). 

Finally, let us consider the quantum generating 
functional for the correlation functions<<y, (g-~)  
• ..Yr, ( g -  L ) >> of the group-covariant "composite" 
fields yt(g - l )  (with the notation for the one-form 
y(g- l ) =dtyt(g- ~ ) along a curve on the orbit (9(o,c) 
with parameter t): 

Z[ j ]  -=exp(iCf[j] ) 

= I ~gexp[i(W[g]+ ~ (JlY(g-l) >o)]. 

(15) 

Performing a change of variables g~g(I+ rl) in ( 15 ) 
and accounting for the transformation properties of  
W[g] ( l l ) y(g-l)--y( (I--q) g-~)=d~l--[y(g-l), 
q ], we obtain the following Ward identity: 

• . 6 ~  . 

O d - a d o ( ~ f ) J - c 2 s ( ~ )  = 0 .  (16, 

We note that (16) represents a closed system of 
equations allowing recursive determination of higher 
order correlation functions in terms of the lower ones. 
For the lowest non-trivial correlation function one 
gets 

ic)tS(1) ((yt(g- l )®yc (g-l ) ) ) 

-O,~( t - t '  ) I®I=0. (17) 

Here s (~) indicates the action of the infinitesimal co- 
cycle s on the first member in the tensor product 
f¢® ~. 

Using the infinitesimal versions the generalized 
composition law given in ( 11 ) and (14) we obtain 
the basic relations 

403 



Volume 251, number 3 PHYSICS LETTERS B 22 November 1990 

8S(~) - -c2yt(~ ' )  ' 

8W[~]  - c 2 S ( ~ - ' ) .  (18) 
~y,(~-~) - 

Now parametr iz ing the source j e  ~ in ( 15 ), (16) as 
j=c2S(~) for some ~ G ,  and using the first relation 
in ( 18 ), we can write the explicit solution of  the Ward 
identities (16)  in the form 

~Y[j=e2S(g)  ] = - W [ g ] .  (19)  

Similarly, for the quan tum effective action F[y] 
= "W[I'] - f ( J l  8"W/Sj)o with y -  8"W/Sj, we easily get 
by using ( 18 ), ( 19 ) and (9) ,  

F[y=y,(g) ] = W i g ] .  (20) 

In the particular case o f G  = Dif fS  ~, corresponding 
to the Virasoro algebra, the elements g~Di f fS  ~ are 
smooth di f feomorphisms F: x--,F(x). One finds that 
the one-cocycle S(g)= S(F) is the schwarzian of  F. 
Fur thermore  one makes  the following connection be- 
tween the general geometric objects and their specific 
realization for G=Di f fS~ :  (t, x ) =  (x +, x - ) ;  s(~) 
= 03- ~; ad~ (~) q =  ~0_t/+ 2 (0_~) q. I f  we also let g -  
be described by x ~ f ( x )  then y,(g-~)=O+f/O_f= 
h++ using Polyakov 's  notat ion [10] (see also ref. 
[ 5 ] ). With these identifications eqs. (9) ,  (13)  and 
(12) are easily recognized as, respectively, Polyakov's  
composi t ion law, the " anoma ly"  equation and the 
equation of  mot ion for induced D = 2 gravity [ 10 ]. 
Similarly, (16) and ( 17 ) reduce to the Ward identi- 
ties for ( (h++. . .h++))  and the equation explicitly 
determining the two-point function ((h+ +h+ + )) in 
ref. [10].  

In the above solution of  the above Ward identities 
in ( 16 ), (19) and (20) we had not taken into ac- 
count the non-invariance (in general)  o f  the integra- 
tion measure ~ g  in ( 15 ) under the right group trans- 
lation g--.g(I+rl). The corresponding jacobian is 
proport ional  to the original geometric action W[g] 
(6) ,  i.e. it gives rise to a renormalizat ion of  the cen- 
tral charge parameter  c. In the case of  the Virasoro 
group and its (1, 0) super-extension, renormaliza-  
tion of  c was found in refs. [ 10,11 ]. 

Derivations,  similar to the one leading to (16) ,  
yield Ward identities for correlation functions in- 
volving arbitrary "compos i te"  fields which have co- 

variant  group properties (e.g. the cocycle S(g)) .  
These Ward identities ( ( 1 6 )  and their analogues) 
provide the basis for the exact quantum solvability 
of  any geometric field theory. The natural further step 
is to exploit the implications of  the general composi-  
tion law (9) and the group-covariant  equation of  
mot ion (12)  to study the quantum renormalizat ion 
properties and obtain spectra of  anomalous  dimen- 
sions, in a model- independent  way. 

The essentials of  the formalism presented above 
were developed in collaboration with A.H. 
Zimerman.  We are thankful to h im and L.A. Ferreira 
for careful checking of  most  o f  the formulas. We are 
also indebted to S. Eiltzur, Y. Fr ishman and E. 
Rabinovici  for the interest in this work. E.N. and S.P. 
gratefully acknowledge the cordial hospitality of  the 
Einstein Center for Theoretical  Physics and Y. 
Fr ishman at the Weizmann Institute of  Science, 
Rehovot,  H.A. acknowledges support  f rom the U S -  
Israel Binational Science Foundation.  

Note added. After complet ion of  the manuscr ipt  we 
became aware of  a preprint  [ 12 ] where the group 
composi t ion law for D = 2 induced ( 1, 0) supergrav- 
ity is derived. This result, as well as its generaliza- 
tions to (2, 0) and (3, 0) induced supergravity, can 
be straightforwardly obtained (see ref. [ 13 ] ) as par- 
ticular cases of  the general composi t ion law (eq. (9)  
above)  since both S(g)  [14] a n d y ( g )  [7,15,16] are 
explicitly known. 
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